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SUMMARY

An accurate �nite-volume Eulerian Lagrangian localized adjoint method (ELLAM) is presented for
solving the one-dimensional variable coe�cients advection dispersion equation that governs transport
of solute in porous medium. The method uses a moving grid to de�ne the solution and test functions.
Consequently, the need for spatial interpolation, or equivalently numerical integration, which is a major
issue in conventional ELLAM formulations, is avoided.
After reviewing the one-dimensional method of ELLAM, we present our strategy and detailed calcu-

lations for both saturated and unsaturated porous medium. Numerical results for a constant-coe�cient
problem and a variable-coe�cient problem are very close to analytical and �ne-grid solutions, respec-
tively. The strength of the developed method is shown for a large range of CFL and grid Peclet numbers.
Copyright ? 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Advection dispersion equations (ADE) can be encountered in many physics domains such as
�uid dynamics, atmospheric modelling, petroleum reservoir simulation, transport of solutes in
groundwater, transport of chemical contaminants through the unsaturated zone of the porous
medium, etc.
The numerical solution of the ADE, which we also call the transport equation, can be

obtained with Eulerian methods, Lagrangian methods, or Characteristic methods.
With Eulerian methods, the equation is solved on a �xed spatial frame. Classical

Eulerian methods are �nite element (FE) and �nite di�erence (FD) methods. For the
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convective dominated transport, these methods often generate numerical solutions with ar-
ti�cial di�usion and=or non-physical oscillations. Special schemes have been developed to
solve the transport equation with FD or FE. Upwind methods, which have been introduced
in FD [1], give �rst-order accurate stable schemes (with no oscillations) but with too much
numerical di�usion smearing the front. To overcome this problem, high-order accurate and
non-oscillatory FD upwind schemes have been developed [2, 3]. These schemes are generally
constructed through a discontinuous piecewise polynomial representation of the solution [2]
and are stabilized with slope limiters.
Numerical problems associated with Eulerian approaches are mainly due to the �rst-order

advection term in the transport equation. Eulerian methods carry out the temporal discretization
in the time direction, so they cannot accurately simulate all of the wave interactions that
take place if the information propagates more than one cell per time step (i.e. if the CFL
condition is violated), either for the reason of stability (for explicit methods) or for the reason
of accuracy (for implicit methods) [4]. The CFL constraint can be very restrictive when the
domain presents non-uniform spatial discretization. Another drawback of Eulerian methods is
that the numerical solution is often dependent on grid orientation [5].
Lagrangian methods, such as the random walk method, employ a moving co-ordinate system

to obtain solutions. The mass transport in porous media may be described by a macroscopic
driving force, (advection) to which some random �uctuations are added. The random �uc-
tuations are due to the velocity variations around the average velocity in correlation with
permeability variations of the porous matrix observed at a macroscopic scale. However, these
methods rapidly become very expensive and one must be very careful when the code is used
in heterogeneous media [6]. Moreover, few references could be found in the literature on
the application of these methods to multidimensional advective–di�usive–reactive transport
equations.
Another class of methods, are characteristic methods. They use a Lagrangian treatment of

the advective part by tracking particles along the characteristics and Eulerian treatment on
the �xed grid of the dispersive part of the transport equation. Because the solutions of trans-
port PDEs are much smoother along the characteristics than they are in the time direction,
characteristic methods generate accurate solutions even if large time steps are used [7]. Char-
acteristic methods have been widely investigated in numerical simulations of ADE in porous
media (References [8–12], among others).
The Eulerian–Lagrangian localized adjoint method (ELLAM) is an improved characteristic

method introduced �rst by Celia et al. [13]. ELLAM uses space-time test functions. It has the
same performance as characteristic methods, guaranties mass conservation and treats general
boundary conditions naturally in its formulation.
Di�erent ELLAM schemes for the one dimensional ADE based on di�erent (forward or

backward) techniques for the tracking of characteristics are investigated [14, 15]. Finite-volume
ELLAM where the test space has lower continuity than the solution space has been developed
in References [16–18].
Celia and Zisman [19] and Ewing and Wang [15, 20, 21] generalized ELLAM schemes for

one-dimensional advection–di�usion–reaction transport equation. ELLAM was also extended
to two dimensions in References [22–26] and was used to simulate the solute transport in the
unsaturated zone by Binning [24] and Binning and Celia [25].
In the literature ELLAM results remain however open to criticism since they can present

numerical dispersion and=or oscillations. Indeed, conventional ELLAM formulations use a
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�xed grid, de�ning the solution and the test functions relative to that �xed grid at every time
step. In general, the �ctitious particle (the food of characteristic lines) does not coincide with
the �xed Eulerian nodes and interpolation must be used to obtain the Lagrangian values. The
accuracy of Lagrangian-Eulerian approaches depends on the order of interpolation. While a
high order interpolation could greatly reduce numerical dispersion, it can reintroduce spurious
oscillation depending on the problem [7, 17].
On the other hand, many have come to recognize mesh adaptation as an e�ective tool for

simulating sharp fronts and reducing numerical dispersion and oscillations (see for example
References [27, 28]).
Therefore, the aim of this work is to combine ELLAM and mesh adaptation. We develop a

new �nite-volume Eulerian Lagrangian localized adjoint method using a moving spatial grid to
de�ne the solution and test functions of ELLAM. The need for spatial interpolation, or equiv-
alently numerical integration, which is a major issue in conventional ELLAM formulations,
is avoided.
Numerical experiments, given in the last part of the paper, show the accuracy and e�ciency

of the new method for both constant-coe�cient and variable-coe�cient problems and for a
large range of CFL and grid Peclet numbers.

2. THE EULERIAN–LAGRANGIAN LOCALIZED ADJOINT METHOD (ELLAM)

2.1. Introduction

In this work, we are interested in the numerical solution of the following one dimensional
ADE:

L(C)=
@(�(x; t)C(x; t))

@t
+
@(q(x; t)C(x; t))

@x
− @
@x

(
D(x; t)

@C(x; t)
@x

)
=0 (1)

This equation governs the transport of a conservative constituent with concentration C(x; t) in
a porous medium, which can be partially or completely saturated with water [29].
The mass balance equation for the �uid, without sink=source terms, in the unsaturated

region [29] is

@(�(x; t))
@t

+
@(q(x; t))
@x

=0 (2)

where q(x; t) is the Darcy’s velocity (LT−1) and �(x; t) the volumetric water content.
We use the standard formulation of the dispersion coe�cient with D(x; t)= �L|q| + �Dm�.

|q| is the magnitude of the Darcy’s velocity, �L is the longitudinal pore-scale dispersivity (L)
which may be a non-linear function of the saturation [30–33]. Dm is the molecular di�usion
coe�cient in free water (L2T−1) and � is the tortuosity factor, assumed to be a given function
of the water content � and the saturation water content �S .
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L(C) is the di�erential operator de�ned by (1). The equation is de�ned in the domain �xt ,
and is subject to initial and boundary conditions:

C(x; 0)=C0(x)

C(x; t)= g1(x; t) (x∈ @�1x ; t¿0)(
−D @C(x; t)

@x

)
:n@� = g2(x; t) (x∈ @�2x ; t¿0)

(
qC(x; t)−D @C(x; t)

@x

)
:n@� = g3(x; t) (x∈ @�3x ; t¿0)

@�1x corresponds to the Dirichlet boundary condition, @�
2
x corresponds to the Neumann bound-

ary condition and @�3x corresponds to the total �ux boundary condition.
In theory the three kinds of boundary condition can be applied at the in�ow or the out�ow

boundary. However, in practice in groundwater solute transport problems, we use almost
exclusively a Dirichlet boundary condition or a total �ux boundary condition at the in�ow.
For the out�ow boundary, the Neumann condition with no dispersive �ux is used almost
exclusively. Therefore, only these con�gurations will be detailed in this work.
One notices that when solving (1), on the spatial domain � for the unknown C(x; t) and

for t ∈ [0; T ], Darcy’s velocity q(x; t) and water content �(x; t) are assumed to be known and
they verify the �uid mass balance equation (2).
The spatial domain �= [0; l] is partitioned into nm intervals or �nite volumes �0i =[x

0
i−1=2;

x0i+1=2] of distance �xi, where x
0
i is the centre of the interval and x

0
i+1=2 de�ned by

x0i+1=2 =




x01=2 = 0

x0i + x
0
i+1

2
(0¡i¡nm)

x0nm+1=2 = l

(3)

Time is divided into discrete and not necessarily equal intervals �t n+1 = t n+1 − t n.

2.2. Variational formulation

The weak formulation of Equation (1), using space-time test functions !=!(x; t) gives:∫ T

0

∫
�
L(C)!=

∫ T

0

∫
�

[
@(�C)
@t

!+
@(qC)
@x

!− @
@x

(
D
@C
@x

)
!
]
dx dt=0 (4)

!(x; t) vanish for t =∈ [t n+1; t n].
Using the following relationships:

@(�C)
@t

!=
@(!�C)
@t

− C� @!
@t

(5)

@(qC)
@x

!=
@(qC!)
@x

− qC @!
@x

(6)
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@
@x

(
D
@C
@x

)
!=

@
@x

(
!D

@C
@x

)
−D @C

@x
@!
@x

(7)

we obtain from (4),

∫ T

0

∫
�

[
@(�!C)
@t

− C
(
�
@!
@t
+ q

@!
@x

)
+
@
@x

((
qC −D @C

@x

)
!
)
+D

@C
@x
@!
@x

]
dx dt=0 (8)

�(@!=@t) + q(@!=@x) is the adjoint associated to the hyperbolic part of L.
Since !=!(x; t), the material derivative of ! is de�ned by

d!
dt
=
@!
@t
+
dx
dt
@!
@x
=
@!
@t
+ V (x; t)

@!
@x

(9)

where V (x; t) is the �uid velocity related to the Darcy velocity by

V (x; t)= q(x; t)=�(x; t) (10)

ELLAM method selects !(x; t) so as to make the adjoint integral of �(@!=@t) + q(@!=@x)
vanish for all x and t. !(x; t) must therefore be constant along the characteristics. Moreover,
to conserve mass, the test function should sum to 1 [13].
With this choice of !, the ADE (8) to solve becomes

∫ T

0

∫
�

[
@(�!C)
@t

+
@
@x

(
!
(
qC −D @C

@x

))
+D

@C
@x
@!
@x

]
dx dt=0 (11)

2.3. Tracking

Let x(t)=X (t; x̃; t̃) be the characteristic passing through a given point (x̃; t̃), with t̃ ∈ [t n; t n+1],
and determined by the following system of equations

{
dx(t)=dt=V (x(t); t)

x(t̃)= x̃
(12)

This notation can refer to tracking forward or backward in time; in particular, we de�ne

x∗ = X (t n; x; t n+1)

�x= X (t n+1; x; t n)
(13)

So that (x; t n+1) backtracks to (x∗; t n) and (x; t n) forward to (�x; t n+1).

2.4. De�nition of subdomains

In this work, we use a moving grid method. Therefore, subdomains are not �xed in space.
The initial spatial discretization is �xed and the domain � is partitioned into nm di�erent
intervals �0i =[x

0
i−1=2; x

0
i+1=2] centred at x

0
i . This discritization is used to compute the Darcy
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Figure 1. De�nition of subdomains between t n and t n+1.

�ux and the volumetric water content. We consider that subdomains �i are dependent on the
time step number and we set �i=�i(�t n+1).
For the �rst time step �t1 = t1 − t0: To de�ne subdomains �i(�t1), we compute �xi(�t1)

and �xi±1=2(�t1) where �xi(�t1) (respectively �xi±1=2(�t1)) is the location at t= t1 obtained when
forward tracking from x0i (respectively x

0
i±1=2) at t= t

0.
For the other time steps �t n+1 = t n+1−t n with n¿1: To de�ne �i(�t n+1) for each time step,

we compute �xi(�t n+1) and �xi±1=2(�t n+1) where �xi(�t n+1) (respectively �xi±1=2(�t n+1)) is the
location at t= t n+1 obtained when forward tracking from x0i (�t

n+1) (respectively x∗
i±1=2(�t

n+1))
at t= t n.
To avoid interpolation (which can be the origin of numerical di�usion [17]), the point at

the foot of the characteristic between t n and t n+1 corresponds to the point at the head of the
characteristic between t n−1 and t n:

x∗
i (�t

n+1) = �xi(�t n)

x∗
i±1=2(�t

n+1) = �xi±1=2(�t n)
(14)

In�ow boundary: To take into account mass which enters the domain from the in�ow
boundary between t n and t n+1, we discretize the in�ow boundary as shown in Figure 1. We
add new points at the in�ow boundary (x∗

j =0) with di�erent initial times (t
n¡t∗j ¡t

n+1) that
we forward track to �xj¿0 at t= t n+1.
The number of these points depends on the behaviour of the boundary condition and=or

the velocity near the in�ow boundary. The spatial distribution of the �nal solution will also
depend on the number of these points.
Let’s assume that we split the time step �t n+1 into p subintervals, p can depend on the

non-uniform time step �t n+1 and will be noted p(�t n+1). The number of subdomains �i is
then no longer constant, since for each time step �t n+1, we add p(�t n+1) new subdomains.
The subdomain number has therefore to be adapted from one time step to another. For any
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time step �t n+1, (14) has to be replaced by

x∗
i+p(�t n+1)(�t

n+1) = �xi(�t n)

x∗
i+p(�t n+1)±1=2(�t

n+1) = �xi±1=2(�t n)
(15)

Out�ow boundary: During �t n+1 when forward tracking nodes from t n to t n+1 some sub-
domains will intersect the out�ow boundary.
If we assume that r(�t n+1) is the number of subdomains which arrive wholly at the out�ow

boundary, np(�t n+1) the total number of subdomains that reach partially or totally the spatial
grid at t n+1, we have:

np(�t n+1) = np(�t n) + p(�t n+1)− r(�t n+1) n¿1

np(�t1) = nm+ p(�t1)− r(�t1)
(16)

There are np−1 subdomains which start at t n¡t¡tn+1 in the in�ow boundary or at t= t n in
the spatial grid (Figure 1) and arrive wholly at the spatial grid at time t= t n+1 when forward
tracked.

2.5. De�nition of the test and the trial functions

Let xi±1=2(t) be the characteristic passing from x∗
i±1=2(�t

n+1) to �xi±1=2(�t n+1), the test function
! is de�ned as

!i(x; t)=

{
1 xi−1=2(t)¡x¡xi+1=2(t); t n¡t¡tn+1

0 otherwise
(17)

As in References [17, 24], the trial functions for C are chosen to be the piecewise linear basis
functions

C=
np(�t n+1)∑
i=1

Ci�i (18)

The nodes are located at the centres of the subdomains.

2.6. Derivation of equations

In the following x∗
i+1=2(�t

n+1) and �xi+1=2(�t n+1) will be denoted by x∗
i+1=2 and �xi+1=2, respec-

tively.
With the trial and test functions de�ned previously, the integrals in Equation (11) become

(see Reference [2] for details)

∫ T

0

∫
�

@(�!iC)
@t

dx dt =
∫ �xi+1=2

�xi−1=2

�n+1Cn+1 dx −
∫ x∗i+1=2

x∗i−1=2

�nCn dx (19)
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∫ T

0

∫
�
D
@C
@x
@!i
@x
dx dt =

∫ t n+1

t∗i−1=2

D
@C
@x

∣∣∣∣
xi−1=2(t)

dt −
∫ t n+1

t∗i+1=2

D
@C
@x

∣∣∣∣
xi+1=2(t)

dt

(20)

∫ T

0

∫
�

[
@
@x

((
qC −D @C

@x

)
!i

)]
dx dt =

∫ t n+1

�ti+1=2

(
qC −D @C

@x

)
x=l
dt

−
∫ t∗i−1=2

t∗i+1=2

(
qC −D @C

@x

)
x=0

dt (21)

Notice that t∗i+1=2 (respectively �ti+1=2) is the time that the characteristic xi+1=2(t) intersects either
the in�ow (respectively the out�ow) boundary of the domain or the time level t n (respectively
t n+1).
The �nal ADE (11) leads to:

∫ �xi+1=2

�xi−1=2

�n+1Cn+1 dx +
∫ t n+1

t∗i−1=2

D
@C
@x

∣∣∣∣
xi−1=2(t)

dt −
∫ t n+1

t∗i+1=2

D
@C
@x

∣∣∣∣
xi+1=2(t)

dt

−
∫ t∗i−1=2

t∗i+1=2

(
qC −D @C

@x

)
x=0

dt +
∫ t n+1

�ti+1=2

(
qC −D @C

@x

)
x=l
dt=

∫ x∗i+1=2

x∗i−1=2

�nCn dx (22)

A geometric interpretation of Equation (22) can be found in Reference [24].

3. NUMERICAL IMPLEMENTATION: PRIOR WORKS

All integrals in (22), with the exception of the integral on the right-hand side, are standard in
�nite elements and will be detailed in a later section. For the term on the right-hand side, the
computational di�culties are due to the need to de�ne the geometry at time t n. The value of
C(x; t n) is known from the solution at the previous time level but not !i(x; t n)=!i(�x; t n+1).
Two approaches can be used to calculate this term.
The backtracking approach: In many characteristic and ELLAM works (for example, Ref-

erences [13, 21, 24, 25, 34, 35]), this term is written as an integral at time t n+1 using standard
values of !(x; t) and backtracking to time level n, where concentrations are known, to evaluate
C(x∗; t n) by linear interpolation in x.
Results obtained by Binning [24] show that this approach can present numerical di�usion

and=or oscillations when used for coarse discretizations. The mass lumping procedure allows
us in this case to remove oscillations but increases numerical di�usion.
Numerical di�usion is added by interpolation errors introduced in the backtracking routine

for non-integer Courant numbers.
Moreover, when using the backtracking approach, di�culties arise when the in�ow boundary

is intersected during backtracking [17]. Multidimensional problems require interpolation and
mapping onto the �xed spatial grid at the previous time level which necessitates signi�cant
e�ort [36].
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The forward-tracking approach: It was proposed by Russell and Trujillo [14] and was
implemented by Healy and Russell for the one dimensional problem [17]. Rather than back-
tracking the geometry, discrete integration points xp de�ned on the �xed grid at t n can be
forward tracked to �xp at time t n+1, so that the amount of mass associated with xp can be
added to the corresponding position in the right-hand side in the global discrete linear alge-
braic system [37].
This approach was successfully used in one dimension by Healy and Russell [17]. They

showed that using three integration points per cell is not su�cient to avoid numerical dis-
persion for all problems. To avoid this problem, they suggested using the trapezoidal rule
and increasing the number of integration points per cell. For non-constant velocity and=or
non-uniform grids, they suggested adding integration points at t n at speci�c locations called
strategic space integration points (SSIP). The locations of SSIPs are determined by backtrack-
ing from certain points on the grid from t n+1 to t n. An important component of this method
is to backtrack at the start of each time step from points in each cell where the slope of the
test function changes [17].
Recently, a forward tracking ELLAM was used by Binning and Celia [38] for solution of

the ADE in three dimensions. Each grid cell is covered with P integration points and known
weights which are forward tracked to the new time level. However, one can notice that all
simulations in Reference [38] are obtained for a single time step and if we use many time
steps, this approach can also produce numerical di�usion as stated in Reference [17].

4. NUMERICAL IMPLEMENTATION: THE NEW ELLAM

We develop a new �nite-volume Eulerian Lagrangian localized adjoint method using a mov-
ing spatial grid to de�ne the solution and test functions of ELLAM. This avoids spatial
interpolation, which is a major issue in conventional ELLAM formulations.

4.1. Evaluation of the integrals

We evaluate, in this section, all integrals given in Equations (2) and (22) and we give the
�nal discrete system to solve in order to obtain the distribution of the concentration over the
domain at each time step.
The �uid mass balance equation: The weak formulation of the �uid mass balance equation

using the test function !i can be written as:∫
�

∫ T

0

[
@�
@t
!i +

@q
@x
!i

]
dx dt=0 (23)

which leads to∫
�

∫ T

0

[
@(!i�)
@t

+
@(!iq)
@x

]
dx dt −

∫
�

∫ T

0

[(
�
@!i
@t
+ q

@!i
@x

)]
dx dt=0 (24)

Since the space-time function !i is constant along the characteristics, we obtain∫
�
!n+1i �n+1 dx +

∫
�

∫ T

0

@(!iq)
@x

dx dt=
∫
�
!ni �

n dx (25)
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Using the de�nition (17), it leads to

∫ �xi+1=2

�xi−1=2

�n+1 dx +
∫ t n+1

�ti+1=2

q|x=l dt −
∫ t∗i−1=2

t∗i+1=2

q|x=0 dt=
∫ x∗i+1=2

x∗i−1=2

�n dx (26)

The mass lumping procedure: We use the mass lumping procedure for the system (22),
the �rst term in the left-hand side becomes∫ �xi+1=2

�xi−1=2

Cn+1�n+1 dx=Cn+1i

∫ �xi+1=2

�xi−1=2

�n+1 dx (27)

where Cn+1i is the unknown concentration at the new time level n+ 1 in �xi(�t n+1).
The treatment of the term in the right-hand side gives

∫ x∗i+1=2

x∗i−1=2

�nCn dx=Cni

∫ x∗i+1=2

x∗i−1=2

�n dx (28)

where Cni is the known concentration at the old time level n in x
∗
i (�t

n+1).
Notice that because we use a moving mesh, Cni and C

n+1
i do not refer to the same spatial

location.
Evaluation of the dispersion terms: These integrals are line integrals along the character-

istics and are evaluated using a one-step backward Euler approximation which gives:

∫ t n+1

t∗i−1=2

D
@C
@x

∣∣∣∣
xi−1=2(t)

dt ≈ (t n+1 − t∗i−1=2)
(
D
@C
@x

)n+1
�xi−1=2

= (t n+1 − t∗i−1=2)Dn+1�xi−1=2

(
Cn+1i − Cn+1i−1
�xi − �xi−1

)
(29)

∫ t n+1

t∗i+1=2

D
@C
@x

∣∣∣∣
xi+1=2(t)

dt ≈ (t n+1 − t∗i+1=2)
(
D
@C
@x

)n+1
�xi+1=2

= (t n+1 − t∗i+1=2)Dn+1�xi+1=2

(
Cn+1i+1 − Cn+1i

�xi+1 − �xi

)
(30)

Values of �L; q and � are assumed to be known. Hence Dn+1�xi−1=2
can be approximated using

values at �xi−1=2. We can also approximate Dn+1�xi−1=2
averaging values at �xi−1; �xi−1=2 and �xi.

4.2. Evaluation of integrals in (22) between t n and t n+1 for central subdomains

This concerns all subdomains �i=�i(�t n+1) with

p(�t n+1)¡i¡np(�t n+1) (31)

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:157–178



EULERIAN LAGRANGIAN LOCALIZED ADJOINT METHOD 167

For these subdomains, boundary integrals vanish and (22) becomes:

Cn+1i

∫ �xi+1=2

�xi−1=2

�n+1 dx +
∫ t n+1

t∗i−1=2

D
@C
@x

∣∣∣∣
xi−1=2(t)

dt −
∫ t n+1

t∗i+1=2

D
@C
@x

∣∣∣∣
xi+1=2(t)

dt=Cni

∫ x∗i+1=2

x∗i−1=2

�n dx (32)

Equation (26) gives for central subdomains

���n+1i =
∫ �xi+1=2

�xi−1=2

�n+1 dx=
∫ x∗i+1=2

x∗i−1=2

�n dx (33)

using the following notation:

�1 =−
Dn+1�xi−1=2

���n+1i

(
t n+1 − t∗i−1=2
�xi − �xi−1

)
(34)

�1 =−
Dn+1�xi+1=2

���n+1i

(
t n+1 − t∗i+1=2
�xi+1 − �xi

)
(35)

The ADE written for central subdomains leads to

�1Cn+1i−1 + (1− �1 − �1)Cn+1i + �1Cn+1i+1 =C
n
i (36)

4.3. Evaluation of integrals in (22) between t n and t n+1 for subdomains starting at the
in�ow boundary

This concern all subdomains �i=�i(�t n+1) with

i6p(�t n+1) (37)

For these subdomains, we have to evaluate the following boundary integral

∫ t∗i−1=2

t∗i+1=2

(
qC −D @C

@x

)
x=0

dt (38)

Dirichlet boundary condition: If we assume a Dirichlet boundary condition C(0; t)= g1(t)
at the in�ow boundary, (38) becomes

∫ t∗i−1=2

t∗i+1=2

(
qC −D @C

@x

)
x=0

dt=
∫ t∗i−1=2

t∗i+1=2

(qC)x=0 dt −
∫ t∗i−1=2

t∗i+1=2

(
D
@C
@x

)
x=0

dt (39)

The time interval �t n+1 is divided to obtain p(�t n+1) subdomains. If we assume g1(t)= g1(t∗i )
constant over the interval [t∗i+1=2; t

∗
i−1=2], then∫ t∗i−1=2

t∗i+1=2

(qC)x=0 dt= g1(t∗i )
∫ t∗i−1=2

t∗i+1=2

q|x=0 dt (40)
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The dispersion term is approximated using a one-step backward Euler approximation:

∫ t∗i−1=2

t∗i+1=2

(
D
@C
@x

)∣∣∣∣
x=0

dt≈ (t∗i−1=2 − t∗i+1=2)D
@C
@x

∣∣∣∣
n+1

x=�xi

=(t∗i−1=2 − t∗i+1=2)
[
Dn+1�xi−1=2

2

(
Cn+1i − Cn+1i−1
�xi − �xi−1

)
+
Dn+1�xi+1=2

2

(
Cn+1i+1 − Cn+1i

�xi+1 − �xi

)]
(41)

The �uid mass balance (26) simpli�es to:

���n+1i =
∫ �xi+1=2

�xi−1=2

�n+1 dx=
∫ t∗i−1=2

t∗i+1=2

q|x=0 dt (42)

The ADE (22) written for subdomains �i=�i(�t n+1) with i6p(�t n+1) becomes:

(�0 + �1)Cn+1i−1 + (1− �0 − �0 − �1 − �1)Cn+1i + (�0 + �1)Cn+1i+1 = g1(t
∗
i ) (43)

where �1 and �1 are still de�ned by (34), (35) and �0 and �0 given by

�0 =−
Dn+1�xi−1=2

2 ���n+1i

( t∗i−1=2 − t∗i+1=2
�xi − �xi−1

)
; �0 =

Dn+1�xi+1=2

2 ���n+1i

( t∗i−1=2 − t∗i+1=2
�xi+1 − �xi

)
(44)

Total �ux boundary condition (qC(0; t)−D@C(0; t)=@x)= g3(t): Assuming g3(t∗i ) the con-
stant value of g3(t) for t∗i+1=26t6t

∗
i−1=2, the boundary integral is approximated as following∫ t∗i−1=2

t∗i+1=2

(
qC −D @C

@x

)
x=0

≈ (t∗i−1=2 − t∗i+1=2)g3(t∗i ) (45)

The ADE (22) becomes:

�1Cn+1i−1 + (1− �1 − �1)Cn+1i + �1Cn+1i+1 =
(t∗i−1=2 − t∗i+1=2)

���n+1i

g3(t∗i ) (46)

4.4. Evaluation of integrals in (22) between t n and t n+1 for the last subdomain which
crossed the out�ow boundary

For the last subdomain �np, Equation (22) with no dispersive out�ow is

Cn+1np

∫ l

�xnp−1=2

�n+1 dx +
∫ t n+1

t n
qC|x=l dt +

∫ t n+1

t n
D
@C
@x

∣∣∣∣
xnp−1=2(t)

dt=
∫ l

x∗np−1=2

�nCn dx (47)

The �uid balance equation gives

���nnp=
∫ l

x∗np−1=2

�n dx=
∫ l

�xnp−1=2

�n+1 dx +
∫ t n+1

t n
q|x=l dt (48)
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The dispersive out�ow is zero, then

C(l; t)=Cnp+1=2 =Cnp (49)

Equation (47) leads to

Cn+1np +
Dn+1�xi−1=2

���nnp

(
�t n+1

�xnp − �xnp−1

)
(Cn+1np − Cn+1np−1)=

1
���nnp

(∫ l

x∗np−1=2

�nCn dx

)
(50)

where ∫ l

x∗np−1=2

�nCn dx=
np+r(�t n+1)∑

i=np
Cni

∫ x∗i+1=2

x∗i−1=2

�n dx (51)

using, the notation

�3 =
Dn+1�xi−1=2

���nnp

(
�t n+1

�xnp − �xnp−1

)
�=

1
���nnp

(
np+r(�t n+1)∑

i=np
Cni

∫ x∗i+1=2

x∗i−1=2

�n dx

)
(52)

the ADE written for the last domain �np can then be written as:

−�3Cn+1np−1 + (1 + �3)C
n+1
np = � (53)

5. NUMERICAL RESULTS

To study the accuracy of the ELLAM formulation presented, we simulate, in this part, the
transport of solute in both saturated and unsaturated porous medium with di�erent spatial and
time discretizations. We compare our numerical results to analytical solution, Binning ELLAM
results (given in Reference [24]), Standard Finite Element and Discontinuous Finite Element
Results. To obtain the numerical solution, we solve the linear system of equations formed by
Equations (36), (43) and (53). We obtain a tridiagonal system which can be easily solved.

5.1. The constant coe�cients ADE

Before comparing the di�erent numerical schemes, let’s study the behaviour of the ELLAM
solution when varying the time step size and=or the number of added subdomains at the in�ow
boundary.
Indeed, we noticed that in order to take into account the mass which enters the domain

from the in�ow boundary between t n and t n+1, we have to add in�ow boundary subdomains
during each time step. The solution and also the computational cost are dependent on the
number p(�t n+1) of added subdomains per time step. For practical problems, p(�t n+1) can
be related to the CFL number as done in Reference [38]. For constant velocity and time step
size, the number of added subdomains is �xed and noted p(�t n+1)= p̂. However, in this case
and even for regular meshes, the number r(�t n+1) of subdomains, leaving the domain from
the out�ow boundary between t n and t n+1, is not constant. Let’s note r̂ the average value of
r(�t n+1) for many time steps.
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Table I. The error with the developed ELLAM for di�erent cases of added in�ow subdomains.

Time step size Number of time steps Final number of subdomains Error

Case 1 (p̂=1¿r̂) 10 50 75 2:4× 10−3

Case 2 (p̂=7¿r̂) 50 10 95 2:6× 10−3

Case 3 (p̂=3≈ r̂) 50 10 55 2:7× 10−3

Case 4 (p̂=1¡r̂) 50 10 35 4:1× 10−3

Case 5 (p̂= r̂=26) 500 1 50 8:2× 10−3

At each time step, we add at least one subdomain at the in�ow boundary and we always
have p̂¿1.
Since subdomains near the out�ow boundary can be larger than those added at the in�ow

boundary, for small time steps we have p̂=1 and r̂¡1. In this case, during simulation we
have many more added subdomains at the in�ow boundary then disappearing subdomains at
the out�ow boundary. This implies that during simulation, the initial mesh is replaced by a
�ner one, which arrives progressively from the in�ow boundary (which corresponds to case 1).
Notice that increasing the time step size allows more �exibility when choosing the number

of added subdomains. If we assume r̂¿1, we can choose the number p̂ of added subdomains
such that:

• Case 2: p̂¿r̂, this case is similar to case 1.
• Case 3: p̂≈ r̂, thus during each time step the number of added subdomains is close
to the number of disappearing subdomains. This allows us to keep the mesh and the
computational cost per time step constant.

• Case 4: p̂¡r̂, thus the number of added in�ow boundary subdomains is less than the
number of disappearing subdomains at the out�ow boundary. This implies that during
simulation, the initial mesh is replaced by a coarser one which arrives progressively from
the in�ow boundary.

To study the behaviour and the accuracy of the numerical solution for the four stated cases,
we simulate the progress of a concentration front in an in�nite column of saturated porous
medium. The analytical solution is given in Reference [29].
The problem is solved for di�erent Peclet and CFL numbers with boundary conditions

C(0; t)=1; C(∞; t)=0 and initial condition C(x; 0)=0 for x¿0.
The domain is composed of a uniform grid, with �x=20 and l=1000 which corresponds to

50 initial subdomains. The parameters are q(x; t)=1, �(x; t)=1, and �L=2 which corresponds
to Pe=10. The �nal simulation time is 500. For each case, Table I gives the time step size,
the number of time steps, the �nal number of subdomains and the error of the solution de�ned
as

error =
1
np

np∑
i=1

|Cnumericali − Canalytical(xi)|

Case 5 in Table I corresponds to the case of a single time step of 500.
The distribution of concentration over the domain at t=500 for all previous cases is given

in Figure 2(a)–2(e).

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2004; 45:157–178



EULERIAN LAGRANGIAN LOCALIZED ADJOINT METHOD 171

Distance

0 200 400 600 800 1000

C
on

ce
nt

ra
tio

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

ANALY

ELLAM

Distance

0 200 400 600 800 1000

C
on

ce
nt

ra
tio

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

ANALY

ELLAM

ANALY

ELLAM

Distance

0 200 400 600 800 1000

C
on

ce
nt

ra
tio

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

C
on

ce
nt

ra
tio

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Distance

0 200 400 600 800 1000

Distance

0 200 400 600 800 1000

C
on

ce
nt

ra
tio

n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

ANALY

ELLAM

ANALY

ELLAM

(a) (b)

(c) (d)

(e)

Figure 2. Concentration at t=500 for (a) case 1, (b) case 2, (c) case 3, (d) case 4 and (e) case 5.

Table I shows that the more accurate results are obtained for cases with a �ner �nal grid
(p̂¿r̂). When only one time step is used, the ELLAM under-predicts the physical dispersion
as observed in Reference [38].
All errors in Table I are relatively small, but to assess the contribution of ELLAM, these

errors have to be compared to those obtained with the commonly used numerical methods
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Table II. Error with di�erent numerical methods.

FEM DFEM ELLAM

CFL=1; Pe=1 2:6× 10−2 7× 10−3 4:8× 10−3

CFL=0:5; Pe=200 4:8× 10−2 1:8× 10−2 2:2× 10−3
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Figure 3. Concentration at t=500 with di�erent numerical methods for (a) CFL=1 and Pe=1,
(b) CFL=0:5 and Pe=200.

when solving the ADE. With this aim, the same example is used to compare errors of the
following methods:

• Eulerian method: the implicit Galerkin �nite element method with linear basis and test
functions.

• High-order Eulerian method: the discontinuous �nite element method given in Refer-
ence [33]. In this case, the transport equation is solved using operator splitting with
DFEM for discretization of the advective term and implicit standard FEM for discretiza-
tion of the dispersive term.

• The developed ELLAM.

We simulate two cases corresponding to CFL=1, Pe=1 and CFL=0:5, Pe=200. In order
to keep the same mesh and computational cost per time step, we choose for both cases p̂
close to r̂.
Results given in Table II and Figures 3(a) and 3(b) show that the ELLAM is the more

accurate method. We have done many other numerical experiments with a large range of CFL
and Peclet numbers. In all cases, the ELLAM gives the most accurate results.
The DFEM gives good results for CFL=1. For CFL less than one, it introduces some

numerical di�usion. This method cannot be used for CFL greater than one, since it uses an
explicit time discretization for the advection equation. This restriction could make DFEM very
expensive for non-uniform grid. Indeed, if we assume that in the above domain there is only
one element which is 100 times smaller than all other elements, the CFL restriction implies
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Table III. Parameters and boundary conditions for the unsaturated problem.

Domain length l=20 cm
Initial condition for �ow h(z; 0)=−100 cm
Boundary conditions for �ow q0(z=0; t)= 8:3 cm=h (upper: Neumann)

h(z= l; t)=−100 cm (lower: Dirichlet)
Parameters for �ow Van Genuchten parameters:

�s=0:312, �r =0:0265, �=0:04 cm−1, n=2:2
Conductivity function
K =A�B (A=18130 cm=h and B=6:07).

�z=1 cm, �t=1 s
Initial condition for transport C(z; 0)= 0
Boundary conditions for transport C(z=0; t)= 1 (upper: Dirichlet)

(@C=@z)z=l=0 (lower: no dispersive �ux)
Parameters for transport �L=0:1 cm

Dm=0
�t=1, 100 and 1000 s

a computational e�ort which is 100 times greater than for the previous study. ELLAM can
avoid this drawback and involves similar work for both cases.

5.2. The variable coe�cients ADE

We are now interested in transport in the unsaturated porous medium. In this case velocity
and water content are no longer constant in time. In order to compare our ELLAM method
to previous work, we simulate the problem described in Reference [24].
A 20cm column contains Touma and Vauclin [39] coarse sand and the boundary conditions

for �ow are a �ux of 8:3 cm h−1 water on the surface, and a �xed head of −100 cm of water
on the bottom of the column, corresponding to a uniform initial condition (see Table III).
The air phase is assumed to present large mobility and is considered at atmospheric pressure.
As in Reference [24], we use a uniform time step of size �t=1 s and a uniform spatial
discretization of �z=1 cm for the �ow problem. Following Celia et al. [40], we solve the
�ow equation using the mixed form of the Richards equation:

@�
@t

− @
@z

[
K(h)

@h
@z

]
+
@K
@z
=0 (54)

with h the pressure head and K(h) is unsaturated hydraulic conductivity.
Equation (54) is obtained from the �uid mass balance equation (2), written for the vertical

column and the Darcy’s velocity which is

q=−K(h)∇(h− z)=−K(h)
(
@h
@z

− 1
)

(55)

where the z-axis is oriented downward.
The empirical Van Genuchten [41] pressure saturation relation used is

�=
�s − �r

|1 + (�h)n|1−1=n + �r (56)
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where �s; �r; �; n are �tting parameters given by Touma and Vauclin [39]:

�s=0:312; �r =0:0265; �=0:044 cm−1; n=2:2 (57)

Denoting S(h)≡ d�=dh the speci�c moisture capacity function and using standard �nite dif-
ference for the modi�ed Picard approximation [40] of (54) leads to:

Sn+1; mi
�mi
�t

− 1
(�z)2

[Kn+1; mi+1=2 (�
m
i+1 − �mi )− Kn+1; mi−1=2 (�

m
i − �mi−1)]

=

(
Kn+1; mi+1=2 (h

n+1; m
i+1 − hn+1; mi )− Kn+1; mi−1=2 (h

n+1; m
i − hn+1; mi−1 )

(�z)2

)

−
(
Kn+1; mi+1=2 − Kn+1; mi−1=2

�z

)
−
(
�n+1; mi − �ni

�t

)
(58)

where m is the iteration level and �mi = h
n+1; m+1
i − hn+1; mi .

The water conductivity function of Touma and Vauclin [39] is described with the �tted
curve:

K =A�B (59)

with A=18130 cm=h and B=6:07.
For the transport equation, the velocity and water content are no longer constant either in

space or in time. Their spatial distributions are obtained at each time step by �rst solving the
�ow equation. Figure 4(a) shows the volumetric water content distribution in the column at
t=1000 s.
In this study, a boundary condition of C=1:0 is used at the top and C=0:0 corresponding

to the initial condition, at the bottom. The dispersivity is set to �L=0:1 cm.
This problem was studied by Binning [24] with both ELLAM and FE methods for a

variety of time steps. Three simulations with di�erent time steps (�t=1 s; 100 s and 1000 s)
are carried out with the current ELLAM method (Table IV). Since the velocity downstream
of the in�ltration front is essentially zero, we have for all simulations r̂=0. The �nal number
of subdomains becomes signi�cant if we add many subdomains at each time step or when
using a very small time step as in simulation 1. For simulations 2 and 3, we choose to add
only 10 and 6 subdomains respectively at the in�ow boundary. For both cases, we obtain a
coarse �nal discretization of respectively 30 and 26 subdomains.
Recall that for this non-constant ADE, our ELLAM corresponds to the non-conservative

form given in [25]. Indeed, the cumulative mass balance ratio de�ned by

cumulative mass balance ratio=

∫
� �

n+1Cn+1 dx − ∫� �0C0 dx∫ T
0

(
qC −D @C

@x

)
x=l
dt − ∫ T0

(
qC −D @C

@x

)
x=0

dt

is illustrated in Figure 4(b) for the simulation 1. As stated in Binning [24], the mass balance
error is signi�cant at the beginning of the simulation, but the method improves at later times.
The origin of these errors is explained in References [24, 25].
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Figure 4. (a) Distribution of � in the column at t=1000 s, (b) Cumulative mass balance error for
simulation 1. (c) Finite element, binning ELLAM and current ELLAM results with varying time step
size after 1000 s of simulation time for the unsaturated case (FE and binning ELLAM results are

extracted from Reference [6]).

In Figure 4(c), we add results of simulations 1, 2 and 3 to the FE and ELLAM results of
Binning [24]. All results are obtained at a simulation time of 1000 s. This �gure shows the
accuracy of the new ELLAM, since with all time step sizes and even when using a single
time step (�t=1000 s) and a coarse grid of 26 subdomains, results are very close to the
dense grid results of Binning [24].

6. CONCLUSION

In this work, we have developed a new �nite-volume Eulerian Lagrangian localized
adjoint method based on a forward tracking procedure. To avoid spatial interpolation, or
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Table IV. Description of the 3 simulations for the unsaturated problem.

Time step Number of time Added subdomains Final number of
size steps per time step (p̂) subdomains

Simulation 1 1 1000 1 1020
Simulation 2 100 10 1 30
Simulation 3 1000 1 6 26

equivalently numerical integration, which is a major issue in conventional ELLAM formula-
tions, the method uses a moving grid to de�ne the solution and test functions.
This method is used to simulate transport of solute in both saturated and unsaturated porous

medium for a large range of CFL and grid Peclet numbers. Numerical results of ELLAM for
constant coe�cient ADE are shown to be more accurate than those of the commonly used
numerical methods. For variable coe�cient ADE, results show the superiority of the presented
method compared to prior ELLAM formulations.

NOMENCLATURE

C(x; t) concentration (ML−3)
q(x; t) Darcy’s velocity (LT−1)
�(x; t) volumetric water content
D(x; t) dispersion coe�cient (L2T−1)
�L longitudinal pore-scale dispersivity (L)
Dm molecular di�usion coe�cient in free water (L2T−1)
� tortuosity factor
�S saturation water content
L(C) di�erential operator
�xt spatial-time domain
� spatial domain
@� domain boundary
n@� outward unit normal on @�
t; T time (T )
l length of the domain (L)
nm initial number of subdomains
�0i initial subdomain
�xi length of subdomain (L)
�t n+1 time interval �t n+1 = t n+1 − t n (T )
n time index
!(x; t) space-time test function
V (x; t) �uid velocity (LT−1)
X tracked location of point (L)
x∗ backtracked coordinate at t n (L)
�x forward tracked coordinate at t n+1 (L)
�i(�t n+1) subdomain �i; its location depend on the time step number
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p(�t n+1) number of in�ow subintervals for �t n+1

r(�t n+1) number of subdomains which arrive wholly at the out�ow for �t n+1

np(�t n+1) total number of subdomains that reach partially or totally the spatial
grid at t n+1

Cn+1i unknown concentration at the new time level n+ 1 in �xi(�t n+1)
p̂ average value of p(�t n+1)
r̂ average value of r(�t n+1) for many time steps
Pe grid Peclet number
h pressure head (L)
K(h) unsaturated hydraulic conductivity (LT−1)
�s; �r; �; n �tting parameters
S(h) speci�c moisture capacity function (L−1)
m iteration level
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